Extracting Information from Multiplex Networks
نویسندگان
چکیده
Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ̃(S) for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.
منابع مشابه
Extracting Information from Negative Interactions in Multiplex Networks Using Mutual Information
Many interesting real-world systems are represented as complex networks with multiple types of interactions and complicated dependency structures between layers. These interactions can be encoded as having a valence with positive links marking interactions such as trust and friendship and negative links denoting distrust or hostility. Extracting information from these negative interactions is c...
متن کاملMesoscopic Structures Reveal the Network Between the Layers of Multiplex Datasets
Multiplex networks describe a large variety of complex systems, whose elements (nodes) can be connected by different types of interactions forming different layers (networks) of the multiplex. Multiplex networks include social networks, transportation networks, or biological networks in the cell or in the brain. Extracting relevant information from these networks is of crucial importance for so...
متن کاملNon-Negative Matrix Factorizations for Multiplex Network Analysis
Networks have been a general tool for representing, analyzing, and modeling relational data arising in several domains. One of the most important aspect of network analysis is community detection or network clustering. Until recently, the major focus have been on discovering community structure in single (i.e., monoplex) networks. However, with the advent of relational data with multiple modali...
متن کاملApplication of Big Data Analytics in Power Distribution Network
Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...
متن کاملExtracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy
Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2016